

MEDICAL UNIVERSITY - PLEVEN FACULTY OF MEDICINE

Department of Pediatrics

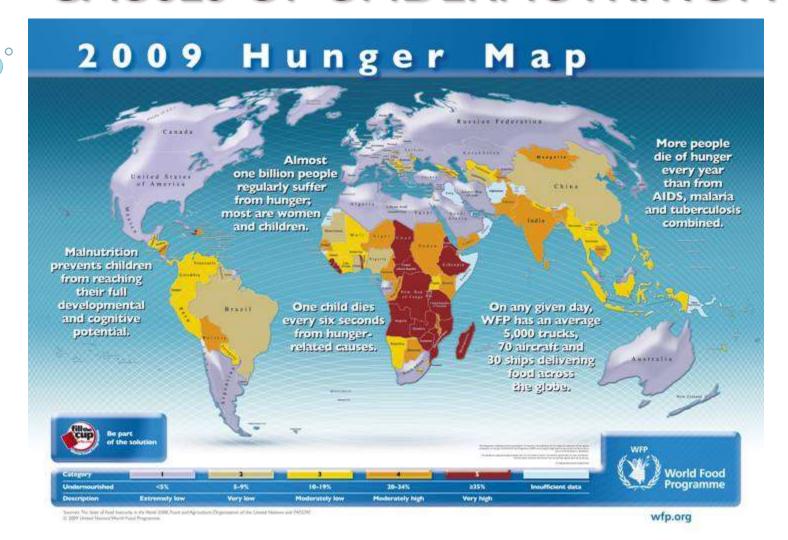
Lecture Nº 8

HYPOTROPHY. OBESITY IN CHILDREN

Assoc. Prof. Ch. Petrova, PhD

UNDERNUTRITION

(HYPOTROPHY)


INTRODUCTION

- Malnutrition is very important healthy problem because of the growth
- Regular nutritional state assessment is recommended for early diagnosis of hypotrophy
- The incidence is about 1-2 %
- Light forms (Hypotrophy)
- Severe forms (Marasmus)

CAUSES OF UNDERNUTRITION

- Inadequate food intake (Primary hypotrophy)
 - Inadequate food amount
 - Inadequate food quality
- Diseases that interfere with digestion and absorption (Secondary hypotrophy):
 - Chronic infections
 - Congenital anomalies (Pyloric stenosis, Gastroesophageal reflux, cardiac, renal and brain abnomalities)
 - Malabsorption (Cystic fibrosis, Celiac disease, Intolerance to milk proteins)
 - Chronic hemolytic anemia
 - Oncology
 - Congenital metabolic diseases
 - Social deprivation

CAUSES OF UNDERNUTRITION

CLINICAL SIGNS

- Loss of body weight
- Normal body height
- Loss of subcutaneous fat tissue

CLASSIFICATION:

I-st stage (Light form)

- Infant fails to gain weight
- Weight loss 10-20% of BW, the height is normal
- Loss of fat tissue in chest and abdomen
- General condition is not bad

2-d stage (Moderate form)

- Infant fails to gain weight
- Weight loss 20-40% of BW
- The height is less than normal
- Loss of fat tissue in body and limbs
- Loose wrinkled skin with poor turgor
- Loss of appetite
- Irritability or apathy

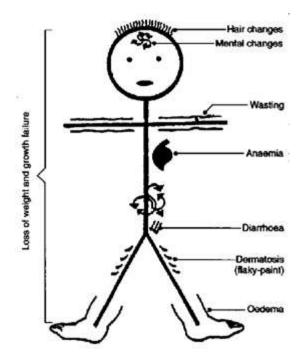
CLASSIFICATION:

3-rd stage (Marasmus)

- Severe general condition
- Weight loss more than 40% of BW
- Growth arrest
- Loss of fat tissue in all body, limbs and face
- The abdomen is flat
- The muscles are atrophic
- The pulse is low

marasmus

- •The temperature is subnormal
- Poor physical activity
- Constipation or diarrhea
- Common intercurrent infections

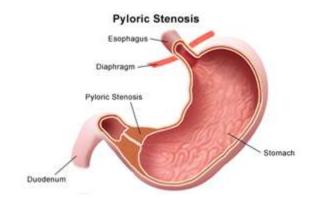

KWASHIORKOR ("SUGAR BABY")

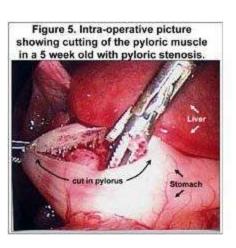
- Most common between I-5 years o following weaning from the breast
- Causes:
 - A lack of protein in the diet (deficiency amino acids)
 - Energy malnutrition
 - Vitamin and mineral deficiency
- Prevalence in developing countries, using mainly carbohydrate food (rice, wheat cereals, corn)

KWASHIORKOR ("SUGAR BABY")

Clinical signs

- Loss of weight
- Edema (Hypoalbuminemia)
- Reddish yellow hair
- Skin with inflammatory changes
- The abdomen is distended
- Enlarged liver with fatty infiltration
- Irritability or apathy
- Frequent infections




LABORATORY

- Iron deficiency anemia
- Serum albumin
- Cholesterol level
- Serum glucose
- Sodium, potassium
- Urine culture
- Stool examination

THERAPY

 Treatment of the illness causing hypotrophy

DIET: I-st stage (Assessment of food tolerance)

- the aim is to achieve weight gain
- the amount of food is in relation to BW
- the kind of food is in relation to BW
- Small frequent feeding
- mother's milk or special milk formulas (rich in proteins)
- fluid therapy to correct dehydration
- antibiotics for bacterial infections

DIET 2-nd stage

- The diet increases slowly until energy requirements are met
- Supplements of
 - proteins
 - Vitamins
 - Enzymes
 - Iron

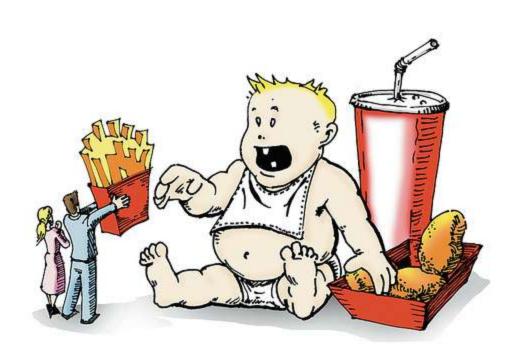
PROGNOSIS

Good when the cause is nutritional disturbance

BARKER'S HYPOTHESIS (David Barker, UK)

 Undernutrition in utero has a long-term health effect and increases the risk of the cardiovascular diseases and type 2 diabetes

These are children who were born SGA


 The period available for altering their poor growth prognosis is during the first two years of life

FAILURE TO THRIVE

Lack of growth both in weight and height

Most of them have emotional deprivation

OBESITY IN CHILDREN

INTRODUCTION

- Important health problem with long-term effect
- Increased incidence rate 10 − 25%
- Very difficult treatment
- Risk for Metabolic syndrome (association with other complications: hypertension, hyperinsulinism, diabetes type 2, dyslipidaemia)

DEFINITION

- An excess of body fat (in kilograms or as a proportion of BW - %BF)
- Body fat mass increases by:
 - Increasing fat cell number (Hyperplasia) in children
 - Increasing fat cell size and lipid content (Hypertrophy) – in adults

CAUSES OF OBESITY

Genetic predisposition

- Overeating
 - Food with high fat content
 - Food with rapidly absorbed carbohydrate (leads to rapid rise in PG and serum insulin,
 - and subsequent reactive hypoglycaemia, resulting in more eating and food intake)

CAUSES OF OBESITY

- Low physical activity (leisure activity is watching TV, computer games)
- CNS and Hypothalamus damages (leading to appetite disorders)
- Endocrine disorders

Psychosocial factors

CAUSES OF OBESITY

- Peptides:
 - Grelin (secretion from stomach increases appetite)
 - Leptin (secretion from fat tissue decreases appetite)
 - Adiponectin (secretion from fat tissue increases insulin sensitivity)
 - TNF-alfa (secretion from fat tissue increases insulin resistance by decreasing insulin receptor effect)

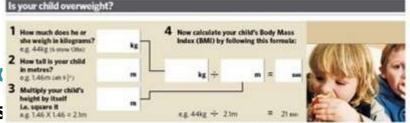
RISK FACTORS FOR CHILDHOOD OBESITY

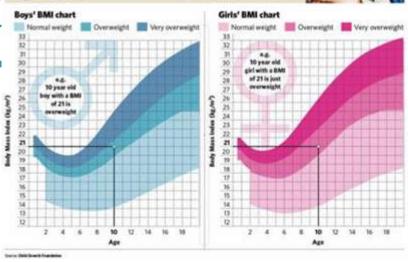
- Family history of obesity
- High birth weight
- Bottle feeding (saturated fat content)
- SGA
- Low social class
- Single child
- Deprive home environment

PATHOGENESIS

 Positive energy balance (high energy intake or low energy expenditure)

 Primary disorder in fat metabolism (increased liposynthesis or decreased lipolysis)

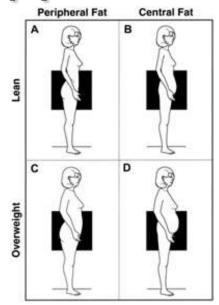

Sympatic NS action on energy balance


CLASSIFICATION OF CHILDHOOD OBESITY

- Primary type obesity (Simple obesity)
- Secondary type obesity (Complicated obesity):
 - Cerebral obesity (trauma, encephalitis)
 - Diencephal obesity (craniopharyngeoma, Hypothalamic syndromes)
 - Endocrine obesity (Hypothyroidism, GH deficiency, Cushing syndrome)
 - Chromosomal obesity (Down syndrome,
 - Prader-Willi syndrome, Laurence-Moon-Biedle syndrome)

ASSESSMENT OF OBESITY

- I. Body weight (BW kg) overweight more than 15% of normal BW
- 2. Body mass index (BMI):
- Formula (BMI=BW kg/BH m2)
- Assessment by standard
 - BMI > 95 centile obes
 - BMI between 85 -95 cer
 - Obesity in adults: BMI >



ASSESSMENT OF OBESITY

- 3. Skinfold caliper (measurement of the subcutaneous fat thickness)
- 4. Degree of obesity using Weight for Height standards:
- I-t degree (+ I5 30% overweight)
- 2-d degree (+ 30 50% overweight)
- 3-rd degree (+ 50 100% ove
- 4-th degree (> 100% overwell)

ASSESSMENT OF OBESITY

- 5. Body composition
- Lean body mass
- Fat mass:
 - a/Body fat amount
 - (kg BF or %BF)
 - b/Body fat distribution (Waist/Hip ratio or
 - Waist circumference):
 - Upper type (Central, Android type – W/H > 0,8) – risk factor for longterm complications
 - Low type (Peripheral, Gynoid type –W/H < 0,8)
 - General type (until puberty W/H = 0,85)

CLINICAL FEATURES

- Increased appetite (bulimia)
- Sweating
- Tiredness and pain in the low limbs
- Skin changes acne, red striae, acanthosis nigricans
- Flat foot (Pes planus)
- Advanced physical growth
- Advanced puberty
- Advanced bone age
- Adipomastia

COMPLICATIONS

- Hypertension
- Pickwick syndrome
- Psychological disturbances
- Decreased working capacity
- Wheezing (due to asthma response to upper respiratory tract infections)

Psychosocial

Eating disorders Poor self-esteem Body image disorder Social isolation and stigmatisation Depression

Pulmonary

Exercise intolerance Obstructive sleep apnoea Asthma

Gastrointestinal

Gallstones Gastro-oesophageal reflux Non-alcoholic fatty liver disorder

Renal

Glomerulosclerosis

Musculoskeletal

Ankle sprains
Flat feet
Tibia vara
Slipped capital femoral epiphysis
Forearm fracture

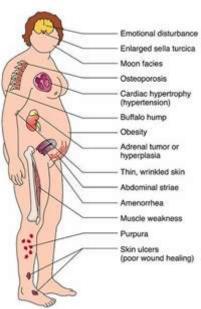
Neurological

Pseudotumour cerebri (idiopathic intracranial hypertension)

Cardiovascular

Hypertension
Dyslipidaemia
Coagulopathy
Chronic inflammation
Endothelial dysfunction

Endocrine


Insulin resistance Impaired fasting glucose or glucose intolerance Type 2 diabetes Precocious puberty Menstrual irregularities Polycystic ovary syndrome (females)

LABORATORY

- Hyperinsulinism
- Impaired glucose tolerance
- Serum cholesterol and triglycerides (above the normal range)
- Cortisol levels (normal or increased)
- Sexual hormones (testosterone increased in girls with PCOS)

DIFFERENTIAL DIAGNOSIS

- Polycystic ovary syndrome (PCOS)
- Cushing syndrome
- Dystrophia adiposogenitalia Frohlich
- Laurence-Moon-Biedle syndrome
- Prader-Willi syndrome
- Hypothyroidism
- Turner's syndrome

MANAGEMENT OF OBESITY

- Very difficult treatment (Fat cells hyperplasia)
- The first aim is to stop weight gain
- Combination of:
 - Low energy diet
 - Balanced diet
 - 3 or 4 mealtimes daily (I small snack)
 - Energy intake 1000 2000 kcal/daily
 - Increased fibre content (fresh fruits, vegetables, cereals)
 - Low rapid absorbing carbohydrates (reducing of sweets, chocolate, biscuits, chips)
 - Low saturated lipids (skimmed milk)

MANAGEMENT OF OBESITY

- Physical activity (sport, walking)
- Drugs (Calorex, Cefamadar)
- Surgery (limited)

PREVENTION

- Healthy lifestyle
- Attention to: TV, Fast food, School lunches (hamburgers)
- Supervision of children growth

PROGNOSIS

It depends on:

- Early onset in infancy
- Severity of obesity
- Duration of obesity
- Complications