The kidney and UTI - common diseases

Prof. Maria Tzekova, MD, PhD, DSc

Acute kidney injury (AKI)

- (AKI) is a syndrome characterised by :
- a rapid (hours to days) deterioration of kidney function.
- It is often diagnosed in the context of other acute illnesses
- and is particularly common in critically ill patients.

Acute kidney injury (AKI)

- The clinical consequences of AKI include:
- the accumulation of waste products,
- electrolytes,
- and fluid,
- but also less obvious effects, including:
- reduced immunity
- and dysfunction of non-renal organs (organ cross-talk)

Diagnosis of AKI

• a rise in serum creatinine and/or fall in urine output.

- short- and long-term risk of death
- or renal replacement therapy (RRT)
- were greatest when patients met both criteria for AKI and when these abnormalities persisted for longer than 3 days.

KDIGO definition and classification of AKI

Diagnostic criteria for AKI:

AKI is defined as any of the following:

• Increase in serum creatinine by $\geq 0.3 \text{ mg/dl} (\geq 26.5 \mu \text{mol/l})$ within 48 h; or

 Increase in serum creatinine to ≥1.5 times baseline, which is known or presumed to have occurred within the prior 7 days; or

• Urine volume <0.5 ml/kg/h for 6 h.

AKI staging system:

AKI stage - stage I and stage II

AKI stage	Serum creatinine criteria	Urine output criteria
AKI stage I	Increase of serum creatinine by ≥0.3 mg/dl (≥26.4 µmol/L)	Urine output <0.5 ml/kg/h for 6-12 h
	or	
	increase to 1.5-1.9 times from baseline	
AKI stage II	Increase of serum creatinine to 2.0-2.9 times from baseline	Urine output <0.5 ml/kg/h for ≥12 h

AKI stage - stage III

- Increase of serum creatinine ≥3.0 times from baseline
- Urine output <0.3 ml/kg/h for ≥24 h
- or
- serum creatinine ≥4.0 mg/dl (≥354 µmol/L)
- anuria for ≥12 h
- or
- in patients <18 years, decrease in estimated GFR to <35 ml/min per 1.73 m²

Glomerulonephritis

- Glomerular disease includes:
- glomerulonephritis, i.e. inflammation of the glomeruli

and

• glomerulopathies when there is no evidence of inflammation.

- Inflammation of the glomeruli which causes the kidneys to malfunction
- also called Acute Nephritis, Glomerulonephritis and Post-Streptococcal Glomerulonephritis
- Predominantly affects children from ages 2 to 12
- Incubation period is 2 to 3 weeks

Glomerulonephritis

- Glomerulonephritis is a subset of glomerulopathies
- Nephrotic syndrome.
- Acute glomerulonephritis (acute nephritic syndrome).
- Rapidly progressive glomerulonephritis.
- Asymptomatic urinary abnormality (haematuria, proteinuria or both).

- Incidental discovery of occult proteinuria or HTN
- Usually presents as chronic renal failure or occult proteinuria
- Glomerulus has scar tissue
- Diabetes most common cause
- most common cause of renal failure
- glycoproteins deposit in basement membrane
- Vascular disease
- atherosclerosis
- HTN
- vascultitis

- Heavy proteinuria
- Proteinuria & haematuria
- Predominant haematuria Minimal
- Change Lupus nephritis
- Acute post streptococcus
- Focal sclerosis Membranous
- Diabetes Mellitus
- Amyloidosis Membrano- proliferative Endocarditis
- Henoch-Schonlein purpura Crescentic (RPGN)
- Haemolytic uraemic syndrome

Acute Glomerulonephritis - symptoms

- Fever
- Headache
- Malaise
- Anorexia
- Nausea and vomiting
- High blood pressure
- Pallor due to edema and/or anemia
- Confusion
- Lethargy
- Loss of muscle tissue
- Enlargement of the liver

Acute Glomerulonephritis - symptoms

- Hematuria: dark brown or smoky urine
- Oliguria: urine output is < 400 ml/day
- •
- Edema: starts in the eye lids and face then the lower and upper limbs then becomes generalized; may be migratory

•

Hypertension: usually mild to moderate

Acute Glomerulonephritis - syndromes

- urinary (haematuria, proteinuria),
- nephritic (edemas, hypertension, gross haematuria, proteinuria),
- nephrotic (edemas, proteinuria, hypoproteinemia, hypercholesterolemia),
- mixed.

- Abrupt onset of:
- glomerular haematuria (RBC casts or dysmorphic RBC).
- non-nephrotic range proteinuria (<2 g in 24 hrs).
- oedema (periorbital, sacral).
- hypertension.
- transient renal impairment (oliguria, uraemia).

- Base line measurements: -
- ↑ Urea
- ↑ Creatinine
- Urinalysis (MSU):
- a) Urine microscopy (red cell cast)
- b) proteinuria

- COMPLICATION :
- Hypertensive encephalopathy,
- heart failure and acute pulmonary edema may occur in severe cases
- Acute renal necrosis due to injury of capillary or capillary thrombosis

- Is characterized by irreversible and progressive glomerular and tubulointerstitial fibrosis.
- ultimately leading to a reduction in the glomerular filtration rate (GFR) and retention of uremic toxins.
- If disease progression is not halted with therapy, the net result is chronic kidney disease (CKD), end-stage renal disease (ESRD), and cardiovascular disease

- Nearly all forms of acute glomerulonephritis have a tendency to progress to chronic glomerulonephritis.
- The progression from acute glomerulonephritis to chronic glomerulonephritis is variable.
- Whereas complete recovery of renal function is the rule for patients with poststreptococcal glomerulonephritis, several other glomerulonephritides, such as immunoglobulin A (IgA) nephropathy, often have a relatively benign course and many do not progress to ESRD.

Glomerulonephritis

Primary - confined to the kidney

• Secondary - due to a systemic disease

Glomerulonephritis -syndromes

- Proteinuria asymptomatic
- Haematuria asymptomatic
- Hypertension
- Nephrotic syndrome
- Acute renal failure
- Rapidly progressive renal failure
- End stage renal failure

CHRONIC GLOMERULONEPHRITIS

Can result from just about ANY of acute ones:

THIN CORTEX

HYALINIZED (fibrotic) GLOMERULI

• OFTEN SEEN IN DIALYSIS PATIENTS

- Presence of glomerular disease as opposed to tubulointersititial or vascular disease is suspected from history :
- Haematuria (especially dysmorphic red cells)
- Red cell casts
- Lipiduria (glomerular permeability must be increased to allow the filtration of large lipoproteins)
- Proteinuria (may be in nephrotic range of >3.5 g/24hours)

- Immune complex disease.
- Named according to:
- etiology,
- microscopic findings ,
- clinical syndrome
- Most common clinical presentations :
- acute nephritic syndrome ,
- nephrotic syndrome.
- Most common cause is autoimmune.

- Autoimmune injury initiated by beta-hemolytic streptococcus
- acute proliferative glomerulonephritis
- Presents as acute nephritic syndrome
- Hematuria
- HT
- increased urea & creatinine
- low urine output
- edema
- Antibodies produced by strep throat deposit in glomerulus
- Most fully recover but about 10% evolve into rapidly progressive glomerulonephritis

- Unknown causes or secondary to poststreptococcal glomerulonephritis
- Autoimmune
- Some present as acute nephritic syndrome, others as renal failure
- Caused by deposition of An-Ab complexes
- All but a few progress to renal failure

- Autoimmune Most common cause of nephrotic syndrome in adults
- About 10% proceed to renal failure within 10 yrs,
- 25% recover completely,
- most progress slowly with:
- proteinuria,
- HTN,
- loss of renal function

Urine Microscopy :

- Cells Casts Crystals.
- Cells epithelial, inflammatory, malignant.
- Casts Protein cast of nephron -
 - Suggest Kidney pathology not URT.
 - Protein, lipid, cells or mixed.
- Crystals suggest high concentration or altered solubility.

TUBULOINTERSTITIAL DISEASE

- Most tubular diseases involve the interstitium
- 2 distinct types of diseases
 - a) inflammatory diseases
 - i) "tubulointerstitial nephritis"
 - b) ischemic or toxic tubular injury →
 i) ATN
 ii) acute renal failure

Tubulointerstitial Nephritis (TIN)

• Inflammatory disease of Interstitium/tubules

- Glomerulus not involved at all or only late in disease
- Infections induced TIN "pyelonephritis"
- Non infection interstitial nephritis
 - a) Caused by:
 - i) drugs
 ii) metabolic disorders (hypokalemia)
 iii radiation injury
 iv) immune reactions

• TIN divided into 2 categories, regardless of etiology:

a) – acute

b) - chronic

Pyelonephritis **Definition:**

Inflammation of the parenchyma

and lining of renal pelvis of kidney

Pyelonephritis Epidemiology and Risk Fctors:

- Host factor:
- Female :Shorter urethra
- Male : uncircumcised infant

 bacterial colonization inside prepuce and urethra

Types of pyelonephritis

Pyelonephritis, according to clinical course rate of onset, may be:

acute

or

■chronic

Acute PYELONEPHRITIS

Acute Pyelonephritis is suppurative (purulent) inflammation involving:

- the renal tubules,
- interstitial tissue,
- calyices,
- and pelvis of the kidney.
- One or both kidney may be involved in the disease.

Routes of infection in acute pyelonephritis

1- ascending pyelonephritis

2- Hematogenous source of the infection

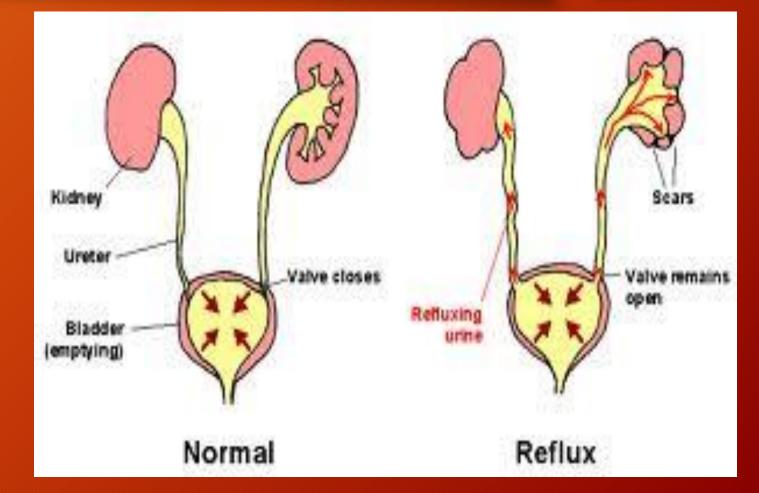
- 2 routes bacteria can reach kidney
 - a) blood stream (not very common)
 - b) lower urinary tract (ascending infections)
 i) catheterization
 - ii) cystoscopy

Acute Pyelonephritis

- Kidney/renal pelvis (distal to collecting ducts)
- Caused by bacterial infections
 - I (lower UTI) cystitis, urethritis and prostatitis
 - upper UTI (pyelonephritis)
 - both tracts
- Principle causative bacteria are gram rods
 - a) E. coli (most common), Proteus, enterobacter, Klebsiella

Routes of infection in acute pyelonephritis

1- ascending pyelonephritis represent more than 85% of all cases with acute pyelonephritis ,the causative organisms are Escherichia coli, Proteus, Enterobacter


It result from Ascending of the infection from Purulent cystitis helped by:

A-chronic obstructive diseases of urinary tract

B-vesicoureteral and intrarenal reflux

FACTORS

- OBSTRUCTION: Congenital or Acquired
- INSTRUMENTATION
- VESICOURETERAL REFLUX
- PREGNANCY
- AGE, SEX, why sex? F>>>M
- PREVIOUS LESIONS
- IMMUNOSUPPRESION or IMMUNODEFICIENCY

Routes of infection in acute pyelonephritis

- 2- Hematogenous source of the infection caused by :
- Staphylococcus,
- -streptococcus

usually produce multiple payemic abscesses.

Acute Pyelonephritis

- Most commonly affect females (in absence of instrumentation)
 a) close proximity to rectum
 b) shorter urethra
 Urine sterile, flushing keeps bladder sterile
- Obstruction increased incidence of UTI:

 prostate hypertrophy
 uterine prolapse
 UT obstructions

- Normal urine flow disruption (obstruction);
- Incomplete bladder emptying;
- > 2-3ml residual urine;
- infection;
- ascent of infection;
- Pregnancy;
- Prostatic hypertrophy;

- Renal calculi ;
- Tumor;
- Stricture ;
- Loss of neurological control of bladder and sphincter(spina bifida , paraplegia, multiple sclerosis);
- Vesicourethral reflux (urine reflux from bladder to ureter, renal pelvis and parenchyma);
- Diabetes Mellitus ; diabetic neuropathy; interfere with bladder
- Impaired cytokine secretion

- genetic background of the host;
- familial disposition to pyelonephritis;
- women with recurrent UTI .
- Have had their first UTI before the age of 15 years
- persistent vaginal colonization
- Mutations in host response genes(those coding forToll- like receptors and the interleukin 8 receptor)

- Factors independently associated with pyelonephritis in young healthy women include:
- Frequent sexual intercourse
- New sexual partner,
- UTI in the previous 1 2 months,
- Maternal history of UTI,
- Diabetes
- Incontinence.
- spermicide use
- And Factors independently associated with pyelonephritis in postmenopausal women: cystoceles ,incontinence and residual urine

Etiology

- The uropathogens causing Pyelonephritis vary by clinical syndrome but are usually enteric gram-negative rods that have migrated to the urinary tract.
- -Gram negative organism : E.coli (common); Proteus mirabilis, Citrobacter, klebsiella, enterobacter, proteus pseudomonas aeruginosa.
- Gram positive organism : Staph.saprophyticus, Staph. Epidermidis enterococcus, Corynebacteria and lactobacilli

Etiology

- Virus Parasite Rare
- Virus Human polymaviruses
- Cytomegalovirus and rubella
- Korean hemorrhagic fever virus
- Mumps and HIV
- Recovered in urine in absence of UTI
- Fungi : candida spp and histoplasma capsulatum
- Protozoa : trichomonas vaginalis
- Helminth: schistosoma haematobium

Pathogenesis:

- The urinary tract can be viewed as an anatomic unit united by a continuous column of urine extending from the urethra to the kidneys.
- In the majority of UTIs bacteria establish infection by ascending from the urethra to the bladder.
- Continuing ascent up the ureter to the kidney is the pathway for most renal parenchymal infections.

Clinical picture of pyelonephritis

Fever

Flank pain
Nausea ,vomiting
Turbid urine due to Presence of pus
Cystitis manifestations may be present (urgency,frequency,dysuria)

Signs and Symptoms:

a) hypertension

- b) seen following normal physical exam
- c) slowly progressive \rightarrow late in disease

d) can cause loss of concentrating mechanisms (if bilateral and progressive)

- i) polyuria
- ii) nocturia

Clinical Features

- Mild pyelonephritis:
- low-grade fever
- with or without lower-back or costovertebral-angle pain .
- Severe pyelonephritis:
- High fever "picket-fence" 72hr
- Nausea
- Vomiting
- flank and/or loin pain

ACUTE PYELONEPHRITIS

Leukocyte infiltration

within interstitial tissue of the kidney

with neutrophils predominance

COMPLICATIONS of ACUTE PYELONEPHRITIS

I- papillary necrosis due to inflammatory thrombosis of the blood vessels supplying the renal papilla

2 -pyonephrosis which mean filling of the dilated calyces and pelvis by pus due to obstruction at pelviureteric junction

3 -perinephric abscess due to spread of the inflammation to the perinephric fat.

4 - Transformation to chronic pyelonephritis

CHRONIC PYELONEPHRITIS

Chronic pyelonephritis is termed chronic tubular and interstitial inflammatory disease

with asymmetric irregular <u>sclerosis</u>(fibrosis)

and deformation of calyices and adjacent parenchyma .

Causes of CHRONIC PYELONEPHRITIS

- I infection (viral, fungal ,bacteria)
- 2- calcular pyelonephritis caused by obstructing stone and back reflux of urine.
- ■3 toxins
- 4 metabolic diseases
- ■5 physical factors
- ■6 tumors
- 7 immunologic reaction
- **8** vascular diseases
- 9- Xanthogranulomatous chronic pyelonephritis

Microscopic picture of CHRONIC PYELONEPHRITIS

- Stroma is infiltrated by lymphocytes, plasma cells and macrophages.

- tubules may be filled with colloid protein Casts so the Enlarged tubules are like thyroid follicle a Phenomenon is termed thyroidisation(i.e renal tubules containing colloid casts simulate thyroid follicles containing colloid inside it).

- Periglomerular fibrosis may end with complete glomerular fibrosis and hyalinosis.

Laboratory Diagnosis

- Rapid diagnostic test:
- Appearance of WBC in urine;
- test for nitrite & leukocyte esterase;
- Urinalysis:
- WBC in Cast shape due to of pyelonephritis

Urine Culture:

- Method of Sampling: Clean Catch: Straight Catheterization: foley cathatere: Suprapubic Aspiration:
- Urine culture interpretation:
- It is positve with colony count equal or more than 10 power 2 In women with dysuria & pyuria
- It is positve with colony count > 10 power 3 In Men

CHRONIC PYELONEPHRITIS: Stroma is infiltrated by lymphocytes, plasma cells and macrophages, with thyroidisation of the tubules

Pyelonephritis

 Emphysematous pyelonephritis: exclusively in diabetic patients production of gas in renal and perinephric tissues bilateral papillary necrosis rise in the serum creatinine level;

 Xanthogranulomatous pyelonephritis chronic urinary obstruction (often by staghorn calculi), chronic infection, Suppurative destruction of renal tissue

Xanthogranulomatous chronic pyelonephritis

Etiologic agent is Proteus

There are a lot of macrophages with pale pink foamy cytoplasm filled with:

- lipid,
- -plasma cells,
- lymphocytes,

and

- granulocytes

Pyelonephritis

- Pyelonephritis can also be complicated by intraparenchymal abscess formation;
- this situation should be suspected when a patient has:
- continued fever
- and/or bacteremia despite antibacterial therapy.

Complication of CHRONIC PYELONEPHRITIS

nephrosclerosis involving Stroma, calyces, pelvis, then vascular and periglomerular sclerosis

secondary contracted kidneys due to fibrosis

chronic renal failure

Differential diagnosis for pyelonephritis

cystitis which is inflammation of the urinary bladder characterized by: urgency, frequency, dysuria.

- While pyelonephritis characterized by inflammation of the kidney characterized by:
- flank pain ,
- tenderness,
- fever,
- Chills
- and increase WBCs.

<u>Chronic pyelonephritis and reflux</u> <u>nephropathy</u>

- Interstitial inflammation with scarring of renal parenchyma
- Important cause of chronic renal failure
- Two forms:
 - a) Chronic obstructive pyelonephritis
 - b) Chronic reflux-associated pyelonephritis

Chronic obstructive pyelonephritis

Can be bilateral (congenital disease)

Obstruction predisposes kidney to infection
recurrent infections on obstructive foci causes scarring – chronic pyelonephritis

chronic reflux-associated pyelonephritis (reflux nephropathy)

More common form of chronic pyelonephritis

reflux nephropathy

Occurs from superimposed of a UTI on vesiculouretheral and intrarenal reflux

- a) reflux may be bi- or unilateral
 - i) unilateral causes atrophy
 - ii) bilateral can cause chronic renal insufficiency
 - iii) diffuse or patchy
- Unclear if sterile vesiculouretheral disease causes renal damage

reflux nephropathy

Hallmark is scarring involving pelvis/calyces, leading to papillary blunting and deformities

- Renal papillae area of kidney where opening from collecting ducts enters renal pelvis
- Kidneys are asymmetrically contracted

Drug-induced interstitial nephritis

• Acute TIN – seen with synthetic penicillins, diuretics (thiazides), NSAID

a) disease begins ~15 days (2-40 range)
i) fever
ii) rash (25% cases)
iii) renal findings: hematuria, leukouria
iv) increased serum creatinine or acute
renal failure with oliguria (50% of cases)

Drug-induced interstitial nephritis

Immune mechanism is indicated (suggested)

a) IgE increased (hypersensitivity - Type I) Injury produced by IgE and cell-mediated immune reactions

Analgesic Nephropathy

- Patients who consume large quantities of analgesics may develop <u>chronic interstitial</u> <u>nephritis</u>, often associated with <u>renal papillary</u> <u>necrosis</u>
- Usually result from consumption of a mixture for long periods of time:
 - a) aspirin
 - b) caffeine
 - c) acetaminophen
 - d) codeine
 - e) phenacetin

Primary pathogenesis is

- a) papillary necrosis followed by
- b) interstitial nephritis is secondary
- c) acetaminophen oxidative damage
- d) aspirin inhibits prostaglandins -
- vasoconstriction
 - e) all the above leads to papillary ischemia
- Chronic renal failure, hypertension and anemia
- Complications may be incidence of "transitional cell carcinoma" of renal pelvis or bladder.

<u>ATN</u> (Clinical entity)

- Destruction of tubular epithelial cells
- Acute suppression of renal function
- Most common cause of acute renal failure(ARF):
 Acute suppression of renal function , oliguria (400 ml/day)

Other causes of ARF

b) severe glomerular disease (RPGN
c) diffuse vascular disease
(Polyarteritis nodosa)
d) diffuse cortical necrosis
e) interstitial nephritis (acute druginduced)
f) acute papillary necrosis

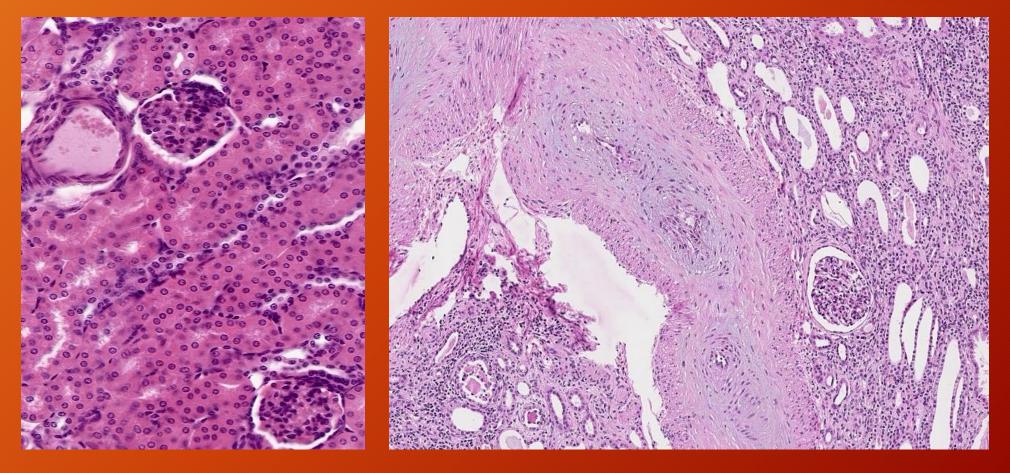
Diseases of Blood Vessels

- Nearly all diseases of kidney involve blood vessels.
- Kidneys involved in pathogenesis of essential and secondary hypertension
- Systemic vascular disease (i.e. arteritis) also involve kidney

Benign nephrosclerosis

- Renal changes associated with benign
 - hypertension
 - a) always associated with hyaline arteriosclerosis
- Kidneys are atrophic
- Many renal diseases cause hypertension which in turn may lead to benign nephrosclerosis.
- Therefore this disease seen simultaneously. with other diseases of kidney

This disease by itself usually does <u>not</u> cause severe damage

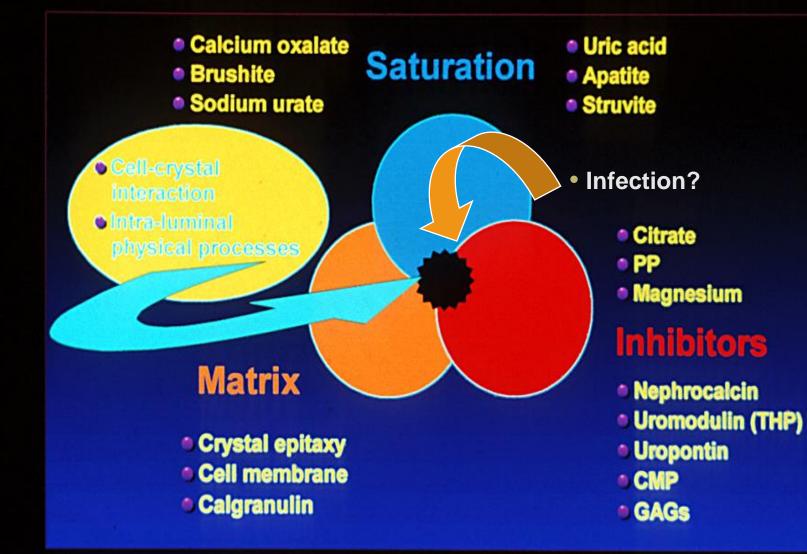

- a) mild oliguria
- b) loss (slight) of concentrating mechanism
- c) decreases GFR

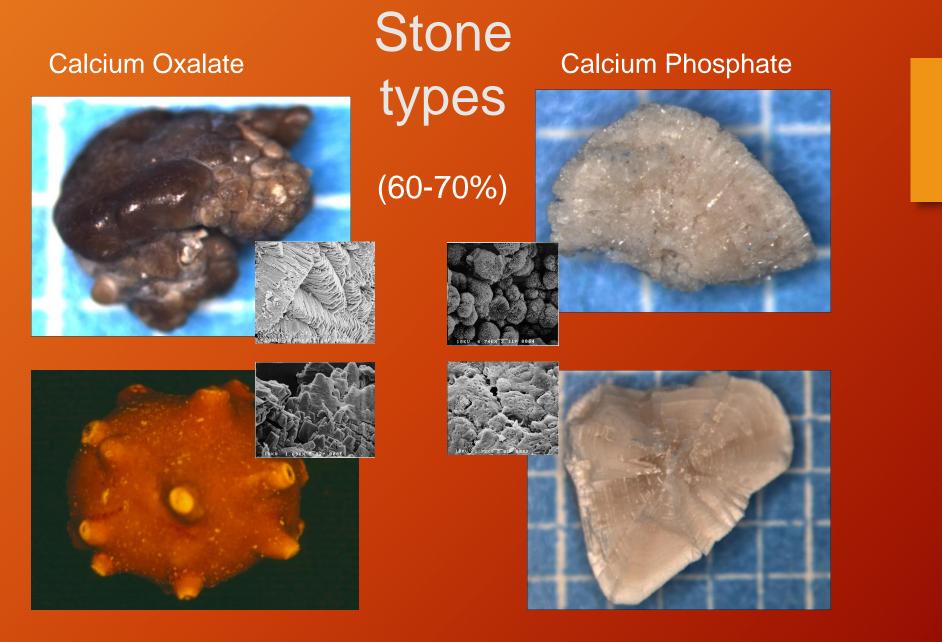
d) mild degree of proteinuria is a constant finding

• These patients usually die from hypertensive heart disease or cerebrovascular disease rather than from renal disease

BENIGN NEPHROSCLEROSIS

- Sclerosis, i.e., "hyalinization" of arterioles and small arteries, i.e., arterio-, arteriolo-
- Is this part of "routine" atherosclerosis????
- VERY VERY VERY common

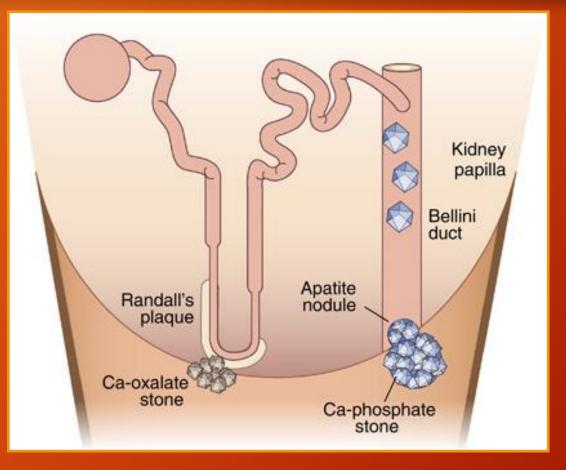

Renal stone disease


- Nephrolithiasis refers to renal stone disease;
- Urolithiasis refers to the presence of stones in the urinary system.
- Stones, or calculi, are formed in the urinary tract from the kidney to bladder by the crystallization of substances excreted in the urine.

Risk Factors

- Prevalence: 2-3% in the U.S., geographic variations
- Gender: Male/Female ratio 4:1
- Life-time risk: Males: 12 % Females: 7 %, incident is rising
- Peak age 20-50 years
- Family History
- Genetic factors
 - Medullary sponge kidney
 - CaSR or FGF 23 polymorphism
- Caucasians more than blacks or hispanics
- Recurrence 30%- 40% at 5 years, 50%- 60% at 10 years

Theories of Stone Formation



Uric Acid (10-15%)

Struvite (10-15%)

Site of stone formation

- Stones, also known as renal calculus or nephrolith, are small, hard deposits of mineral and acid salts on the inner surfaces of the kidneys.
- If stones grow to sufficient size they can cause blockage of the ureter.
- There is seasonal variation with stone occurring more often in the summer months suspecting the role of dehydration in this process.

INCIDENCE

- Urinary calculi are more common in men than in women.
- Incidence of urinary calculi peaks between the 3rd and 5th decades of life.
- 80% of stones under 2mm in size
- 90% of stones pass through the urinary system spontaneously

STONE FORMATION

- Highly concentrated urine constituents crystallize and harden to form calculi.
- Kidney stones form when urine contains more crystal- forming substances — such as calcium, oxalate and uric acid.
- At the same time, our urine may lack substances that prevent crystals from sticking together, creating an ideal environment for kidney stones to form.

STONE FORMATION

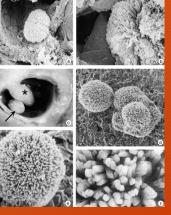
- The crystals get deposited on the nucleus and continue to grow.
- These can some times adhere to the renal papillae.
- TYPES OF KIDNEY STONES:
- Calcium oxalate
- Calcium phosphate
- Struvite
- Uric acid
- Cystine

Renal stones

- Calcium stones: Most kidney stones are calcium stones, usually in the form of calcium oxalate and calcium phosphate.
- Oxalate is a naturally occurring substance found in food. Some fruits and vegetables, as well as nuts and chocolate, have high oxalate levels. Our liver also produces oxalate.
- IN ALKALINE URINE \rightarrow ^D ENLARGES RAPIDLY \rightarrow TAKE SHAPE OF CALYCES \rightarrow ^D STAGHORN \rightarrow CALCIUM PHOSPHATE

Renal stones

0

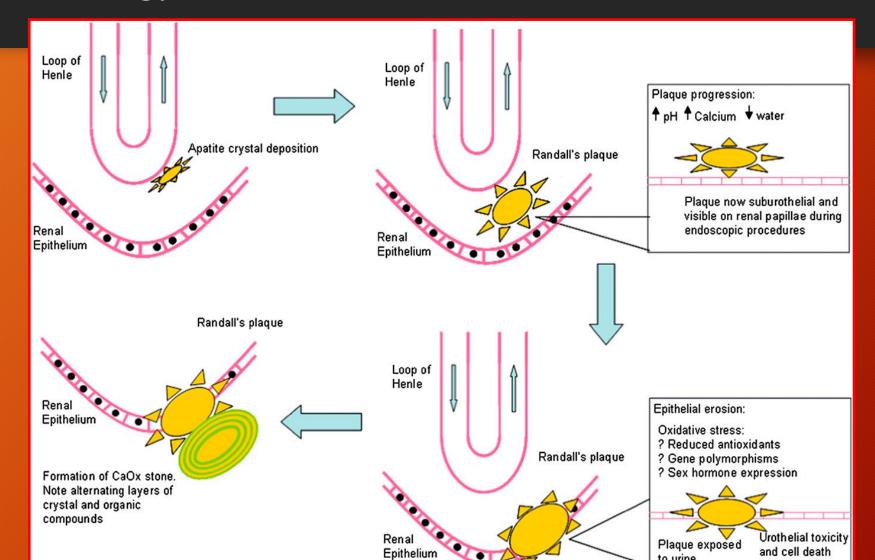

- Uric Acid: This type of kidney stone is more common in men than in women.
- They can occur in people with gout or those going through chemotherapy.
- Struvite: This type of stone is found mostly in women with urinary tract infection. These stones can be quite large and cause urinary obstruction.
- Cystine: Cystine stones are rare. They occur in both men and women who have the genetic disorder cystinuria.
- Other: Other, rarer types of kidney stones also can occur. Such as XANTHINE STONES, DIHYDROXY ADENINE STONE, SILICATE STONES etc.

Hereditary Disorders

2,8-dihydroxyadenine

adenine phosphoribosyltransferase (APRT)

Alcaptonuria


homogentisate 1,2-dioxygenase

- Polycystic kidney Disease
- Medullary Sponge Kidney
- Horseshoe kidney

Cystine (1%) dibasic AA transporter

Pathobiology of stone formation

CAUSES

- Supersaturation of urine is the key to stone formation
- Imbalance of pH in urine
- Gout
- Hyperparathyroidism
- Inflammatory Bowel Disease
- UTI (Urinary Tract Infections)
- Dehydration
- Crystal aggregation

Hyperuricosuria:

- 20-40% of stone formers.
- Elevated RBC urate transport.
- Uric acid may interact with glutamic acid and act as a promoter.
- <u>Reduces</u> inhibitory activity of urinary macromolecular inhibitors.
- "Salting out" phenomenon.
- <u>Solubility</u> enhanced by urine pH > 6.5.
- **Dietary purine intake** is the major source.

RISK FACTORS

• HIGH MINERAL CONTENT IN DRINKING WATER

DEHYDRATION

- FAMILY OR PERSONAL HISTORY DIETARY INTAKE BEING OBESE
- •

PATHOPHYSIOLOGY

- Slow urine flow, resulting in super saturation of the urine.
- Damage to the lining of the urinary tract

 Decreased inhibitor substances in the urine that would otherwise prevent super saturation and crystalline aggregation.

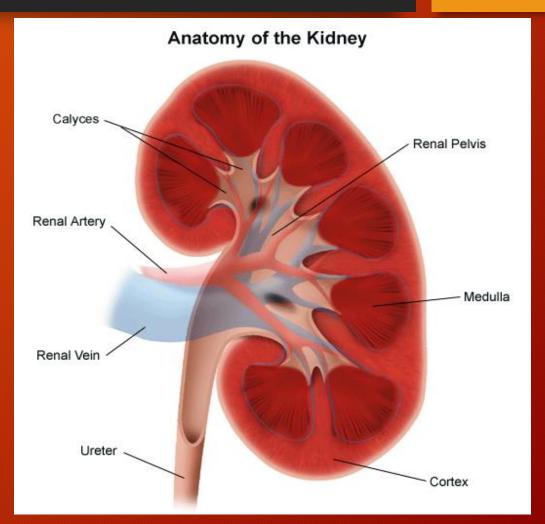
CLINICAL MANIFESTATION

- Severe flank pain
- Abdominal pain
- Nausea and vomiting
- Fatigue
- Elevated temperature, BP, and respirations
- Steady Pain
- Pain on urination;
- Pink, red or brown urine
- Oliguria and anuria in obstruction \rightarrow Hematuria \rightarrow Renal colic \rightarrow Hydronephrosis

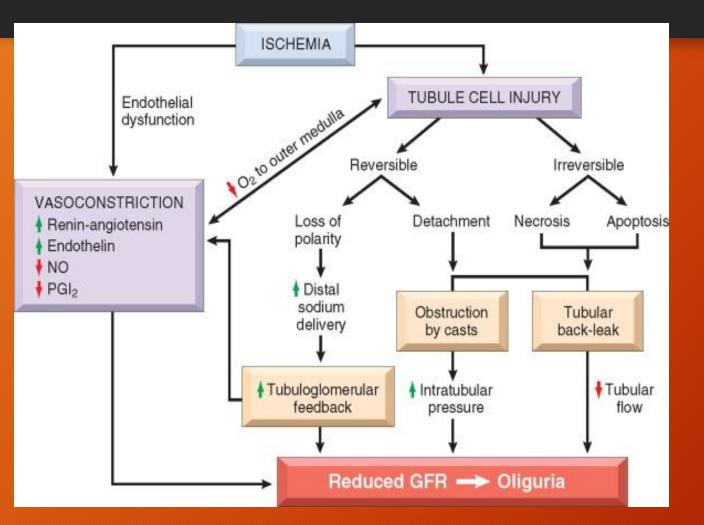
Metabolic abnormalities: Urinary excretion values

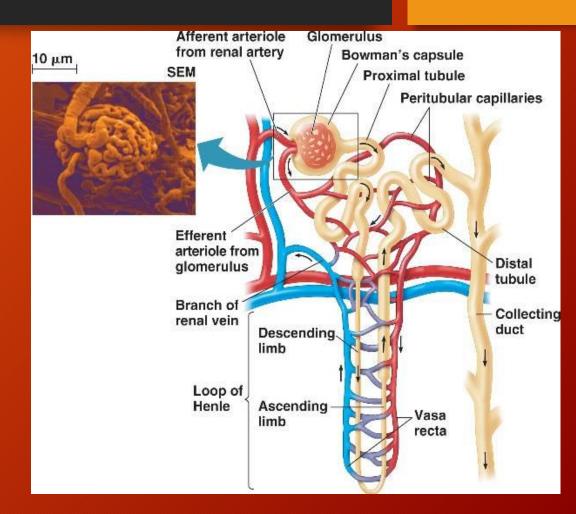
- Hypercalciuria
- Hyperoxaluria
- Hyperuricosuria
- Hypocitrituria
- Hypomagnesuria

- > 4 mg/kg/d or > 140 mg/gm Cr
- > 40 mg/d
- 800 mg/d (M), 750 mg/d
 (F) or 300 mg/L
- < 320 mg/d
- < 60 mg/d


Chronic Kidney Disease

Chronic Kidney Disease is defined as a slow lose of renal function over time. This leads to a decreased ability to remove waste products from the body and perform homeostatic functions.




Clinical Definition

- GFR of less than 60 ml/minute per 1.73m² per body surface area (normal is 125ml/min).
 - GFR Calculator: <u>http://www.kidney.org/profession</u> <u>als/kdoqi/gfr_calculator.cfm</u>
- Presence of kidney damage, regardless of the cause, for three or more months

Pathophysiology

Symptoms

- Hematuria
- Flank pain
- Edema
- Hypertension
- Signs of uremia
- Lethargy and fatigue
- Loss of appetite
- If asymptomatic may have elevated serum creatinine concentration or an abnormal urinalysis

Risk Factors

- Age of more than 60 years
- Hypertension and Diabetes
 - Responsible for 2/3 of cases
- Cardiovascular disease
- Family history of the disease.
- Race and ethnicity
 - Highest incidence is for African Americans
 - Hispanics have higher incidence rates of ESRD than non-Hispanics.

Convergence of Genetic Factors

- Genes for heart and vascular disease
- Genes that maintain ionic balance
- Genes for glomerulonephritis
- Genes for diabetes
- Genes that may be involved in inherited renal diseases

Prevention

- Keep diabetes and blood pressure controlled
- If at risk perform screening tests
- Reduce exposure to nephrotoxic drugs
- Eat right and exercise
- Know your family history
 - If you have a positive family history ask doctor to perform common screening tests for kidney function.