

Sample Test – v.2

 Indicate the correct answers <u>on the answer sheet</u> with "×". For each question there is only one correct answer. Multiple answers will be scored as incorrect. 				
 Atom becomes io a) gain of electro b) loss of electro 	ons		c) gain or loss o d) neither gain	of electrons nor loss of electrons
2. Which sublevel can by occupied by a maximum of 10 electrons?				
a) f3. The nucleus of an present in a neutrina) 2		-	d) s eutrons. The total d) 14	number of electrons
 4. Which of the following is true about polar covalent bonds? a) electrons are transferred from one atom to another b) one atom will have a partial negative charge and another will have a partial positive charge c) atoms do not carry a partial charge d) both atoms in this type of bond hold a partial negative charge 				
5. What type of bonding is formed when an ammonia molecule accepts a proton?a) ionicb) metallicc) coordinate covalentd) electrovalent				
6. The isotope symbol for an ion that has 11 protons, 12 neutrons, and 10 electrons is:				
a) ${}^{12}_{11}Na^+$	b) $_{11}^{23}Na$	c) ${}^{23}_{12}Mg^{2+}$	d) $_{11}^{23}Na^+$	
7. Which one of the following molecules has an ionic bond ?a) HClb) PCl ₃ c) MgF ₂ d) CF ₄				
8. Which of the follo a) H ₂	owing has the st b) N ₂	rongest bond? c)	F ₂	d) O ₂
9. In which of the fo a) FeSO ₄	0 1	unds iron has the hig CH ₃ COO) ₂	ghest oxidation st c) Fe ₂ O ₃	ate ? d) FeCl ₂

- 10. Which of the following is the weakest acid ?a) carbonicb) hydrochloricc) nitricd) trichloroacetic
- 11. Which of following compounds is a weak electrolyte ?a) NaOHb) HClc) H2Sd) HClO4
- 12. Which of the following reactions is an oxidation-reduction process ? a) HCl + NaOH \rightarrow NaCl + H₂O b) BaCl₂ + Na₂SO₄ \rightarrow BaSO₄ + 2NaCl c) C + H₂O \rightarrow H₂ + CO d) CaCO₃ \rightarrow CaO + CO₂

13. Which of the following is not a possible graph of concentration versus time for a reactant?

14. If the rate of the reaction $A + B \rightarrow products$ is first order in A and second order in B, then the rate law is :

a) rate = $k[A][B]^2$ b) rate = $[A][B]^2$ c) rate = k[A].2[B] d) rate = k[A]+2[B]

15. The addition of a catalyst to a reaction provides an alternative mechanism with:

- a) lower activation energy and lower reaction rate
- b) lower activation energy and higher reaction rate
- c) higher activation energy and lower reaction rate
- d) higher activation energy and higher reaction rate

16. When sodium reacts with chlorine to form sodium chloride ($2Na + Cl_2 \rightarrow 2NaCl$), electrons are lost by

- a) sodium, only
- b) chlorine, only
- c) both sodium and chlorine
- d) neither sodium nor chlorine
- 17. A Brönsted-Lowry base is a(n) :

a) proton donor b) electron donor c) proton acceptor d) electron acceptor

- 18. The definition of pH is:
 - a) log of the hydrogen ion concentration
 - b) natural log of the hydrogen ion concentration
 - c) negative log of the hydroxide ion concentration
 - d) negative log of the hydrogen ion concentration
- 19. Forward reaction is favored when
 - a) concentration of reactants is decreased
 - b) concentration of products is increased
 - c) concentration of products is decreased
 - d) concentration of products is increased and concentration of reactants is decreased
- 20. If the pH of a solution is 8, what is the molar concentration of hydroxide ions [OH⁻]? a) 1x10⁻⁶ mol/L b) 6 mol/L c) 1x10⁻¹⁴ mol/L d) 1x10⁻⁸ mol/L
- 21. The name given to hydrocarbons containing one double bond is:

a) alkanes	b) alkenes	c) alkynes	d) dienes

22. Select the molecular formula of toluene a) C_5H_7 b) C_6H_8 c) C_7H_8 d) C_8H_{10}

23.	Which of the folle a) CO ₂	owing compounds con b) H ₃ C-CHO		-	p-hybrid state? l) H ₃ C-CH=CH ₂	
24.		H ₃	fied as ether?			
25.		ict formed in the reacting H_2SO_4 + $H_2O \xrightarrow{H_2SO_4} ?$	с) CH ₃ CI) butana	H ₂ CH(OH)CH ₂ OF 1	ł
26.	CH₃CH₂COOCHa) diethyl etherb) propionic acidc) ethyl alcohol	roduct/s of the following ${}_{2}CH_{3} + H_{2}O \xrightarrow{H^{+}}$ d and propyl alcohol and propionic acid and propyl alcohol	ng reaction?			
 27. What reagents can be used to synthesize propionamide? a) butyric acid and ammonia b) propionic acid and formamide c) propionic acid and ammonia d) acetic acid and acetamide 						
28.	When a hydrogen of a family know a) phenols	\mathbf{h} \mathbf{h}	placed by a hyd	lroxyl gro		oound is part alcohols
29.	• •	d diethyl ether	between which	of the fol	owing pairs of mo	olecules?
30.	Primary alcohols a) acids	on dehydrogenation g b) ketones	ive : c) aldehydes	(l) alkenes	
31.	 Which of the follo a) 4-ethyl-3-met b) 4-ethyl-3-met c) 4-ethyl-3-met d) 4-ethyl-3-met 	hyl-2-hexanol hyl-1-hexanol	Ild be oxidized t	to form 4	-ethyl-3-methylhe	xanal?
32.	Which of the foll	owing would give a po	ositive Tollens t	est?		011

a) CH₃CH₂COCH₃ b) CH₃CH=CH₂ c) CH₃CH₂CHO d) CH₃COOH

 33. Which are the products of a) CH₃-CH₂-COONa, (b) CH₃-CH₂-COONa a c) CH₃-CH₂-COONa a d) CH₃-CH₂-COONa, N 	CO_2 and H_2O nd CO_2 nd H_2O	-CH ₂ COOH + Na ₂ CO		
34. The correct IUPAC nam	34. The correct IUPAC name for the following compound $CH_3 - CH_2 - CH$			
 a) 4-ethyl-2-methyl-1-b b) 6-bromo-2-methyl-3 c) 2-bromo-3-ethyl-2-n d) 2-bromo-4-ethylhept 	-ethylhexane nethylhexane		CH ₃	
 35. Which statement is correction of the carbonyl group a smaller b) aldehydes are more to aldehydes and keton d) all of the above 	activity in addition reareactive than ketones	-	the hydrocarbon residue is	
36. 2-Butene will be the proa) hydration of butaneb) oxidation of 2-butanoc) hydration of propyned) dehydration of 2-buta	1			
37. Monoaminomonocarboxa) acidic characterb) basic character	xylic acids have:	c) amphoteric p d) reducing pov	-	
38. Glucose is classified as:a) aldopentose	b) ketohexose	c) ketotriose	d) aldohexose	
39. Which of the following a) alanine	is not amino acid ? b) aniline	c) asparagine	d) leucine	
40. When cellulose is hydro a) glucose	lyzed, the final produce b) fructose	cts are molecules of: c) maltose	d) ribose	