MEDICAL UNIVERSITY - PLEVEN, BULGARIA

Sample Test - v.3

*	Indicate the	e correct	answers	on the	answer	sheet	with	"×".

For	each	question	there is	only one	correct	answer.	Multiple	answers	will be	scored	as
incorr	ect										

For each questi incorrect.	on there is only o	ne correct answer.	. Multiple an	swers will be scored
1. The two main par a) nucleus and el b) nucleons and p c) oxidation num d) protons and ne	ectrons protons ber and valence			
2. Orbitals are not or	ccupied by:			
a) 0 electrons	b) 1 electr	on c) 2 elec	etrons	d) 3 electrons
b) protons, but a c c) electrons, but a	O, and ¹⁸ O have the stifferent number of a different number of a different number of different number of	electrons neutrons f protons		
b) Electrons fillc) Two electronsd) Electrons will	vel of an electron is a single orbital before in the same orbital	dependent on the shore moving to an emp must have separate so s of the same energy	ty orbital spins	pairing up in an orbital
a) When two atorb) When electronc) When each at	ms share one or mor ns are transferred fro om has no partial ch	of a polar covalent to electrons with each om one atom to another arge associated with red between two atoms.	n other ner it	
6. Which of the folloa) NaF	•	of an ionic compour	nd? l) CH ₄	
7. Which of the folloa) fluorine	owing elements does b) hydrogen	s NOT form an ion w c) potassium	vith a charge of d) sod	
, -	e energy eak a chemical bond rm a chemical bond	I		

c) released when a chemical bond breaks d) absorbed when a chemical bond forms

9. In what type of bor a) polar covalent b b) non-polar coval		c) io	electrons to other onic bond ydrogen bond	r atoms ?
a) If there is a slibond will formb) If there is a law will form.c) On the period left to right an	n. rge difference betweer	n electronegat n electronegat est transition n the electroneg	tivity between at ivity between ato	oms then a polar covalent oms then an ionic bond gases, as you move from
In the above reac	n: $Zn + CuSO_4 \rightarrow ZnS$ etion copper b) loses proto		ains electrons	d) loses electrons
because: a) the average ki		ules increases		reaction increases
13. A fast reaction sha) low activationb) large equilibria	n energy		c) catalyst presd) high activation	
$3H_2 + N_2 -$	on of hydrogen is incre → 2 NH ₃ will speed b) 4 times	up:	the rate of gaseou d) 12	
a) temperatureb) pressure	of the following condi-		ne state of equilib	orium
			c) increasing	the pressure the temperature
17. A Brönsted-Lowr a) proton donor b) electron donor			c) proton accept d) electron acce	
18. In an aqueous sol a) 2	ution of 0.010 M HBr b) 3	(a strong elec c) 7	etrolyte), the pOF d) 12	

19. When an acid is added toa) it goes upb) it goes down	o water, what happens t	o the pH? c) it stays t d) none of		
20. Identify the acids and th a) H ₂ O and CH ₃ COOH b) H ₂ O and CH ₃ COOH c) H ₂ O and H ₃ O ⁺ are ac d) H ₂ O and CH ₃ COO ⁻ a	are acids; H ₃ O ⁺ and CH are bases; H ₃ O ⁺ and CH ids; CH ₃ COOH and CH	I ₃ COO are bases I ₃ COO are acids I ₃ COO are bases	$O \rightleftharpoons H_3O^+$	+ CH ₃ COO ⁻
21. When a double bond is a other is a pi bond. The part and a sp ² hybrid orbitals	pi bond is created by the	e overlap of :		na bond and the d) s orbitals
22. Markovnikov's rule wou a) CH ₂ =CH-CH ₃	ald apply to reaction of b) CH ₂ =CH ₂	HCl with: c) CH ₃ -CH=CH-	CH ₃	d) CH ₃ -CH ₂ -CH ₃
23. The simplest member of a) methanol	Forganic compounds is b) methane	c) formaldehyde		d) formic acid
24. Calcium carbide on reac a) methane	tion with water gives b) ethane	c) propane	d) ace	tylene
25. Which among the follow a) formaldehyde b) formic acid	ving product is formed v	when ethyne reacts c) acetaldeh d) acetic aci	yde	?
26. Which is the most coma) 1,2-dibromopentaneb) 2-bromopentane	mon product of the reac	c) 2,3-	and 1-pentodibromopen omopentane	tane
27. The correct IUPAC name a) 5-hexen-4-ol b) 1-hexen-3-ol	c) 4-hydroxy-5-hexer d) 3-hydroxy-1-hexer	ne	₂ CHCH=CF OH	H ₂ is:
28. Which of the following a) ethylene	can form metallic derive b) acetylene	atives by the repla c) ethane	cement of h d) me	•
29. What two functional groan alcohol and aldehyde b) ether and aldehyde	-	the end of a carbon c) alcohol a d) ether and	and ketone	
30. Which of the following a) CH ₃ CH ₂ OH b) (CH ₃) ₂ CHOH	is a tertiary alcohol?	c) (CH ₃) d) (CH ₃)	₂CHCH2OH ₃COH	I
31. Phenol on nitration witha) 2-nitrophenolb) 3-nitrophenol	conc. HNO ₃ forms:	c) 4-nitro d) 2,4,6-	ophenol trinitrophen	ol

	b) a c)	a weak base a weak acid an oxidizing agent a reducing agent				
33.	a) ' b) ' c) ' d) ' d) ' d) ' d) ' d) ' d) ' d	The carbonyl group of bond. The carbonyl group of and to a hydrogen ato The carbonyl group of and to a hydroxyl group of and to a hydroxyl group of and to a hydroxyl group of the carbonyl group of and to a hydroxyl group of the carbonyl group	consists of a carbon ato oup by a single bond. consists of a carbon ato	m joined to an o m joined to an o m joined to an o	xygen atom b	y a double bond
34.	CH a)]	at product is formed in a product is formed in a contract of the second	tene	c) CH₃CI	H ₂ CH ₂ COCH ₃ H ₂ CH ₂ CHO	
35.	Wh		compounds will be form b) 2-butanol	, -	ogenation of b	utanal ? d) propanone
36.	a) 1b) 1c) 1	they both have two h	arbons in the skeleton ydroxyl groups llcohol; ethanol is mon	ohydric alcohol		
37.	a) 'b) 'c) '	There are about 20 of They are all alpha-an They may only conta		d one acid group	each.	
38.		which group carbohy aldopentose	drates does fructose be b) ketohexose	long? c) ketot	rriose	d) aldohexose
39.		at compounds give a alcohols	positive silver mirror to b) phenols	est? c) aldehydes	d) keto	ones
40.	a) t b) c c) c	two glucose molecule one glucose molecule one glucose molecule	ride consisting of what es and one fructose mole and one galactose mole ose and one fructose m	cule ecule	nrs?	

32. When phenol dissolves in water, it functions as